
A0-A27 594 NONLINEAR A£ STICS IN A DISPIRSIVE CONTINUUM: RANOM
WAVES RADIATlION PIE..IU) CALIFORNIA UNIV LOS ANGELES
OEPT OF PHYSICS If A CADT MAN83 11 -42

UNCLASSIFIED NOOOI4-?S-C-0246 F/ 20/I NL

Ehhhhhl I3



11111.2 . 1 m. 4 IIII 8
Jjj 1.5 jj~jJ .

MFCROCOPY RESOLUTION TEST CHART
NAT$ONAL BUREAU OF STANDARDS-'963- A



UCLA

Department
of

Physics"

Nonlinear Acoustics in a Dispersive Continuum:

Random Waves, Radiation Pressure,

and Quantum Noise

by

Michael Anthony Cabot

DT1C
ELECT
APR 2 91983

LOS ANGELES 90024 SE
LAJ CALIFORNIA

Jpublk t.Jb'D Pfd &a" No 3 4 ~
C=maiI ~ -



3
TECHNICAL REPORT No. 42

March 1983

Submitted by

I. Rudnick, Project Director

and

S. Putterman, Professor of Physics and Thesis Advisor

Nonlinear Acoustics in a Dispersive Continuum:

Random Waves, Radiation Pressure,

and Quantum Noise

by

Michael Anthony Cabot

Office of Naval Research Department of Physics

Contract University of California
N00014-75-C-0246 Los Angeles, California 90024
NR. No. 384-302

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED D T IC
f&P-LECTE

Reproduction in whole or in part is permitted
for any purpose of the United States Government. A 1 9 1983

E



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE 'Wrhn Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

.GOVT I . IIENT'S CATALOG NUMBER

Technical Report #42k
4 TITLE (ard Subtitie) S. TYPE OF REPORT & PERIOD COVERED

Nonlinear Acoustics in a Dispersive Continuum: Interim
Random Waves, Radiation Pressure, and Quantum

Noise 6. PERFORMING ORG. REPORT NUMBER

Technical Report #42
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

Michael Anthony Cabot ONR N00014-75-C-0246

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
University of California at Los Angeles AREA 6 WORK UNIT NUMUERS

Department of Physics NR. No. 384-302
Los Angeles, California 90024

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research March 1983
Physics Division, Code 412 Is. NUMBER OF PAGES
Arlington, Virginia 22217 81

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS.. DECLASSI FICATION/DOWNGRADING
SCHEDULE

I. oISTRISiUTION STATEMENT (*/ this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abetret entered In Block 20, If diffetrent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide If neceesa r ad identify by block number)

DISPERSIVE HYDRODYNAMICS KINETIC EQUATION SPONTANEOUS DECAY
SOLITARY WAVES SOUND ATTENUATION PLANCK'S LAW
WIEN'S LAW BANDWIDTH EFFECTS DISPERSION OF SOUND
NONLINEAR INTERACTION MODE COUPLING RADIATION PRESSURE
SOUND ZERO POINT MOTION

20. ABSTRACT (Continue on 'erere ulde a neneedm'min Identify by block nmber)

SEE OVER-

DD IF'O 1473 DITION Or I .ov os is OBSOLETE UNCLASSIFIED
S/N 0102 LF 014.4001

SECURITY CLASSIFICATION OF THIS PAGE (11ton Date Entered)

-



UNCLASSIFIED
SECURITY CLASSIFICATION OF TMIS PAGE(Ihen Date Entered)

20. ABSTRACT

The nonlinear interaction of sound with sound is studied using
dispersive hydrodynamics which is derived from a variational principle
and the assumption that the internal energy density depends on gradients
of the mass density. The attenuation of sound due to nonlinear interaction
with a background is calculated and is shown to be sensitive to both the
nature of the dispersion and decay bandwidths. The theoretical results
are compared to those of low temperature helium experiments. A kinetic
equation which describes *the nonlinear self-interaction of a background is
derived. When a Debye-type cutoff is imposed, a white noise distribution
is shown to be a stationary distribution of the kinetic equation. Zero
point motion is introduced into the classical hydrodynamics through a
renormalization scheme, which imposes the requirement that in a sound
scattering the zero point motion does not lose energy. The form of the
zero point motion is then determined by the kinetic equation and a derived
fluid law that is analogous to Wien's displacement law for electromagnetic
radiation. The kinetic equation with zero point motion included is shown
to have a Planck distriubtion as a stationary solution. An H-theorem is
presented. The attenuation and spectrum of decay of a sound wave due to
nonlinear interaction with zero point motion is calculated. In one dimension
the dispersive hydrodynamic equations are used to calculate the Langevin and
Rayleigh radiation pressures of wave packets and solitary waves.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEa'ff Deem Entered)



TABLE OF CONTENTS

PAGE

LIST OF FIGURES AND TABLE ...... .................... v

ACKNOWLEDGEMENTS .......... .... .................. vi

VITA AND PUBLICATIONS .......... .................... vii

ABSTRACT ......... ........................... .... viii

INTRODUCTION ............ ......................... 1

CHAPTER

I. The Nonlinear Dispersive Continuum Mechanics ...... 7

II. Scattering of Sound by Sound in a Dispersive Continuum 18

III. Boltzmann Equation for Sound ... .............. ... 33

APPENDIX

A. Rayleigh, Langevin, and Solitary Wave Pressure in a

Dispersive Continuum ........ .................. 44

B. The Effect of Decay Bandwidth on Attenuation .. ...... 56

C. Wien's Displacement Law for a Ponderable Continuum . . . 69

BIBLIOGRAPHY ........ ......................... .... 79
Aooession For
NTIS GRA&I
DTIC TAB

- UnannouncedA cJu s t if i ca ti o

Distribution/
Availability 

Codes
Avail and/or

Dist special.

iv



LIST OF FIGURES

FIGURES PAGE

1. Attenuation versus Temperature of a 15 MHz Sound Wave

at Zero Pressure ......... ...................... .29

2. Attenuation versus Frequency at Zero Pressure and a

Temperature of 0.20 K ....... ................... .. 30

3. Attenuation versus Pressure for a 256 MHz Sound Wave

at a Temperature of 0.22 K ....... ................. 31

4. Attenuation versus Temperature of a 15 MHz Sound Wave

at a Pressure of 25 Atm ........ ................... 32

TABLE PAGE

Properties of Wave Packets and Solitary Waves ... ......... .16

v



ACKNOWLEDGEMENTS

Professor Seth Putterman is primarily responsible for my achieve-

ments in graduate research. He was both understanding and tolerant of

my character. I could always rely upon him in my difficult periods.

Throughout my studies, he was as much a friend as he was a great ad-

viser. For all this, I thank him.

My path to graduate studies was paved for the most part by my

family. My parents always encouraged me to realize my potential. My

Uncle Frank Costanzo taught me the theory of life and my Uncle Joe

Costanzo taught me the practice. To these family members and to those

not mentioned, I thank you.

I thank Barbara Cabot, my dear wife and graduate counselor, for

her constant support, patience, and understanding.

To Ms. Liz Muldawer-Gallagher, who typed the text of my thesis,

I extend my gratitude for making the task seem simple. I also thank

Ron Bohm, Hisayo Boulling, and Scott Hannahs for helping to prepare

parts of the manuscript.

I sincerely thank Bruce Denardo, Jun-Ru Wu, Don Clark, and Narbik

Manukian for their many contributions and their friendship.

I appreciate the help and financial support that was given by

Professor Isadore Rudnick.

I am grateful to Robert Keolian, Steve Baker, Harold Eaton, and

Vince Kotsubo for their efforts.

Finally, I thank all of my committee members for their kindness.

vi



VITA

September 23, 1952--Born, Cleveland, Ohio

1974-B.S., Michigan State University

1976--M.S., University of California at Los Angeles

PUBLICATIONS

M. Cabot, A. Galonscy, R. Doering, and J. Costanzo,

Nuci. Instrum. and Methods, vol.125, no. 1,85(1975).

M. Cabot and S. Putterman, Phys. Lett. 83A,91(1981).

vii

... . .....----....._ __...



ABSTRACT OF THE DISSERTATION

Nonlinear Acoustics in a Dispersive Continuum:

Random Waves, Radiation Pressure, and Quantum Noise

by

Michael Anthony Cabot

Doctor of Philosophy in Physics

University of California, Los Angeles, 1983

Professor Seth J. Putterman, Chair

The nonlinear interaction of sound with sound is studied using

dispersive hydrodynamics which is derived from a variational princi-

ple and the assumption that the internal energy density depends on

gradients of the mass density. The attenuation of sound due to non-

linear interaction with a background is calculated and is shown to

be sensitive to both the nature of the dispersion and decay band-

widths. The theoretical results are compared to those of low tempera-

ture helium experiments. A kinetic equation which describes the non-

linear self-interaction of a background is derived. When a Debye-type

cutoff is imposed, a white noise distribution is shown to be a sta-

tionary distribution of the kinetic equation. Zero point motion is
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introduced into the classical hydrodynamics through a renormalization

scheme, which imposes the requirement that in a sound scattering the

zero point motion does not lose energy. The form of the zero point

motion is then determined by the kinetic equation and a derived fluid

law that is analogous to Wien's displacement law for electromagnetic

radiation. The kinetic equation with-zero point motion included is

shown to have a Planck distribution as a stationary solution. An

H-theorem is presented. The attenuation and spectrum of decay of a

sound wave due to nonlinear interaction with zero point motion is

calculated. In one dimension, the dispersive hydrodynamic equations

are used to calculate the Langevin and Rayleigh radiation pressures

of wave packets and solitary waves.

ix
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INTRODUCTION

The hydrodynamical equations for a classical one component fluid

constitute a contracted description in which knowledge of a complete

set of five field variables (e.g. o,s,v; the density, specific entropy,

and velocity) uniquely specifies the state. These equations are in

general nonlinear due to the convective terms, which arise as a con-

sequence of the requirements imposed by Galilean relativity, as well as

the form of the equation of state for pressure "" as a function of

density which is needed to close the theory. The equations of hydro-

dynamics are a unique consequence of the assumption of a local descrip-

tion in terms of five field variables as a complete set, and Pascal's

law for the isotropy of the stresses (i.e. the stress tensor in the

rest frame must be diagonal).

For disturbances of sufficiently small amplitude the hydrodynamics

can be linearized in the amplitude of deviation from the equilibrium

state. One finds that there exist traveling wave solutions (sound

waves) where the frequency w is related to the wave number k by

w 0 ck where c (a ( 1 2

Such a linear relation is said to imply no dispersion. On the linear

level superposition applies, sound waves run through each other without

interacting so that the propagation of one wave is unaffected by the

presence of other waves. Nonlinearities cause a propagating wave to

interact with other waves so as to scatter energy out of the original

channel and with itself so as to distort and eventually form a shock-

front. The main goal of this thesis is to discuss the consequences

1



for sound propagation of including anisotropic stresses (and therefore

dispersion) as well as nonlinear effects.

The nonlinear dispersive equations are derived from a variational

principle (for an energy density which is a function of (Vo) 
2) in

Chapter 1, where their general properties (e.g. Kelvin, Bernoulli and

conservation laws) are discussed. At lowest order the nonlinear

equations take the form:

22
O- GV p (0-1)

where
2

22 4

and G is a nonlinear coupling coefficient. This equation will always

be solved in a perturbation approach. For instance considering a super-

position of two waves which satisfy the lowest order equation Op-0;

so that

P P ico8601 4 - w1t) +' P2cOs(k2* - w2t)

one finds that the leading order correction to P due to the interaction

of the two waves is p12 where

0P12 - GP1P2V X cos[('j I k 2 )' - (wl ± w2)t]±

so that nonlinearities create sum and difference frequencies. 
2

2



In Appendix A we consider the energy and momentum of a ID wave

packet localized in wave number and propagating according to (0-1). As

a result of the nonlinearities some of the energy and momentum are

contained at (almost) zero wavelength and therefore part of the energy

and momentum propagate at a different velocity than the original packet

if the fluid is dispersive. The various radiation pressures of these

packets are calculated and compared with the properties of solitons.

As a propagating wave interacts with a background of sound the

waves created at the sum and difference frequencies takes energy from

the imposed wave and accounts for an attenuation which was calculated

by Westervelt4 for the nondispersive cane (a-O). The main contribution

to the scattering (attenuation) arises from terms on the right hand

side of (0-1) which are at resonante so that

2 2 4
wl ± W2 = c 1k1 ± 1c21 + al' ± '21

In the limit of no dispersion this occurs when two waves are parallel

(k1 jk 2). The presence of a small reversible dispersion can have a

dramatic effect since for c>0 there is a resonance possible at some

finite angle whereas for a<0 no resonance is possible and the scattering

of sound is dramatically reduced. In Chapter II the scattering of

sound by sound for the dispersive medium is calculated. We find that

Westervelt's formula is multiplied by a factor of 2 for i>0 and by "0"

for a<0. This effect applies, however, only when the dispersion is

larger than the bandwidth which results from the scattering. In

Appendix B the detailed transition formulas that apply in this inter-

mediate regime are calculated as well as an extra (usually logarithmic)

3



dispersion of sound due to scattering by sound.

The results, and especially the approach employed should be of

relevance to dielectric media (e.g. Helium, Quartz) at low temperature.

A dielectric is a medium in which the electrons are not free to flow so

that the only motion possible is a vibration of the constituent ions or

molecules. These oscillations are of course sound waves and in ad-

dition to the impressed wave there will be a background of random

oscillations due to the internal energy (or temperature) of the dielec-

tric which must manifest itself in the form of sound (noise). Based

upon our presumption that the nonlinear continuum mechanics can be

applied to the sound wave as well as the thermal noise we can use these

results of the macroscopic continuum to calculate the attenuation coef-

ficient of sound in dielectrics. Liquid helium is a particularly rich

dielectric since a>O for P<18 atmospheres and less than zero at higher
5

pressure. In Chapter II some of the results are compared with the

measured ultrasonic attenuation oroperties in liquid helium.6

While nonlinear effects can cause energy to be scattered out of

a given channel they can also lead to processes in the background

whereby two waves collide and throw energy back into the given channel.

These effects are much like restituting collisions in kinetic theory

and are included in Chapter III where a Boltzmann type equation7 for

sound waves is derived from the hydrodynamics. The stationary solution

to the nonlinear Boltzmann equation for sound is white noise (equipar-

tition) thus deriving the noise spectrum which- is normally imposed upon

the linearized theory via the fluctuation dissipation theorem.
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All of the results discussed above (both theory and experiment)

apply to the regime where hw/k BT<l. In the strong quantum limit

hw/k BT>l sound waves should also attenuate due to a spontaneous decay

as first calculated by Slonimskii8 using a quantized theory. In

Chapter III we show how these results can also be obtained from the

classical nonlinear hydrodynamics by including the possibility of

scattering from a zero-temperature noise (or so-called zero point
9

motion). By the second law of thermodynamics the zero-temperature

state cannot lose energy. Thus the scattering calculation must be

renormalized so as not to remove energy from the zero-temperature noise.

By selecting this configuration out of the classical hydrodynamics we

generalize the Westervelt equation to include attenuation due to scat-

tering by quantum as well as thermal noise. The Boltzmann equation for

sound is also generalized so as to include a zero point noise defined

as above. The resulting equation for the quantum theory of interacting

sound waves has a stationary solution given by Planck's law plus

harmonic zero point motion. Planck's constant enters as an undetermined

constant which characterizes the most general solution to the balance

equation. The uniqueness of this solution as well as the corresponding

"H" theorem are discussed.

A central theme of this work is that many results normally thought

to be obtainable only through microscopic and or quantum calculations

can be interpreted and obtained directly from the classical nonlinear

hydrodynamics plus the second law. Thus the approach developed here

might be of value in understanding quantum effects in complex N body

systems. In particular when it is desired to understand quantum

S



noise in macroscopic systems such as Josephson junctions10 it should be

realized that the usual prescription for writing down a quantum

Langevin equation does not take into account the renormalization

developed in Chapter III.

As the energy density of the sound field obeys a Boltzmann type

equation one can ask if there are compressional modes of the spectral

intensity of sound. This, so-called second sound (thermal waves) exists

in liquid helium and can be obtained via the procedure developed herein.

In this vein it has also recently been shown that the complete two

fluid hydrodynamics can be deduced from the nonlinear continuum

mechanics of the one-component classical fluid.
12
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CHAPTER I.

THE NONLINEAR DISPERSIVE CONTINUUM MECHANICS

At low temperatures sound in liquid helium and other dielectrics

decays due to scattering from other sound waves in the substance. We

regard these other waves as the thermal and quantum noise present in

the material. As two sound waves can interact only as a result of non-

linear processes a description of these effects must be based upon the

complete nonlinear hydrodynamics. Furthermore the interaction of sound

waves is strongest when the frequencies and wave numbers are in

resonance or

w(k) - .+ w2 and k - Ic + , (-1)

where w(k) is the dispersion law for the medium, and we have in mind an

interaction of two waves with wavenumbers kI and k2 . Whether or not

the condition (1-1) can be satisfied depends crucially upon the dis-

persion in the medium i.e. on the second derivative of w with respect to

k which divides into 3 cases:

2

d.. > 0 upward or anomalous dispersion, (1-2A)dk 
2

2
d_. < 0 downward or normal dispersion, and (1-2B)
dk

2

2
d w 0 nondispersive (or so-called semi-dispersion). (1-2C)

dk
2

7



For cases (1-2A) and (1-2C) resonances exist whereas for case (1-2B)

there is no resonant configuration for the three wave processes as de-

scribed by Eq.(1-1). Thus the nonlinear effects and therefore the

scattering of sound by sound is sensitive to dispersion so that a basic

description of sound interacting with sound must be dispersive as well

as nonlinear . We will see that for case (1-2B) the attenuation is

zero to this order whereas for case (1-2A) the attenuation is twice

that given by (1-2C) though there is a transition region. These three

cases will be used as a guide for understanding the attenuation of sound

4in He at low temperature.

In the continuum mechanical approach dispersion arises from an

internal energy which depends upon gradients of the mass density. The

simplest model in which this occurs is that of particles on springs for

which the Lagrangian is

.2 2
Lj - 001 " ) ] (1-3)

where nj is the displacement of the jth particle of mass m from its

equilibrium position "Ja" where "a" is the equilibrium interparticle

spacing and $ is the spring constant. We procede to the continuum limit

by setting

22 3 3
u + - ~ - -0-1;3a~ . x 2 6x 6 ax

x - ja m/a P (1-4)

I_*.fdx
j

t8



so that

L E 2d 2 -4 2} 15

where Q is the equilibrium mass density and we have included terms

which are at most quadratic in "Ti" and involve no more than four

derivatives. A number of surface terms have been dropped in deriving

(1-5). The equation of motion implied by (1-5) is

2 2 2 2 4
an c 2-- C a an 0 (1-6)cat' a .2 ax,

+

where 2

is the long wavelength speed of sound. The dispersion law implied by

(1-6) is

2 2 2 c2a
2k 4

w- c k - (1-7)
12

Due to the k4 term this system shows dispersion and this term arose

2 2from contributions to the potential energy proportional to (a2 n/3x2)

which is in fact the gradient in the density, or to lowest order:

2
a n a (1-8)
ax2  ax p

Using Equation (1-8) and

v 2 I and I . (P -Pe)
t x e

the Lagrangian (1-5) becomes to order (- e)2

Pe 125x'

9



We see that for this simple model the potential energy terms which

depend upon gradients of the density lead to the dispersion.

To obtain the general nonlinear equations including dispersion we

apply Hamilton's principle to a fluid Lagrangian density given by the

1 2difference of kinetic (i. ov ) and internal energy density U where

U = u(psVp) (1-10)

so that

6f( v - t1)drdt 0 (0-)

This, however, must be subject to the constraints of mass conservation

and entropy conservation which are not contained in the symmetry of the

original Lagrangian:

n+ o 0 ad (1-12)a t

P+ 7  .ps- (1-13)

Incorporating (1-12) and (1-13) in (-i) with undetermined Lagrange

multipliers 0, 6 leads to the variational principle:

6JApv2 - U + aV ( V)XI}d rdt - 0 (1-14)

where we have included also the additional constraint on the identity

of fluid particles:

ax
-- (v.)X 0 (1-15)

10



or the cbange in initial location X of a particle which is at "r" at

time "t" is zero if one follows the particle's motion. This may appear

tautological but is necessary to produce physical results if one per-

forms a variation where P,v are fixed at the endpoints rather than the

displacements. 13  Without (1-15) one obtains the restriction that

isentropic flow must be irrotational.

Varying the independent quantities leads to

8w: sDv- pV . Vs +.VX. - 0
+ 20

6 --u + V.*- v V 0
Jt 

(1-16)
8 : 4 . - 0 '0, -

8,. + _ + V.+VP
as at

6X: ' + 7.(vY.) - 0
at

whereas varying 0,Y,S leads to (1-12), (1-15), and (1-13). Combining

equations (1-16) leads to Newton's law of motion for the dispersive

continuum

P(2 (v.;); J v + (,Pv J(1-17)
at br. 6(8p/bri)

where we have set

P U + P + (-18)

and introduced as an extension of the 1st or 2nd laws of thermodynamics:

dU pa.pd4 + Td(ps) + a- d(Vjp) (1-19)

7i



From these basic equations (1-12, 1-13, 1-17) we can derive the laws of

momentum and energy conservation

.~v +0 and A-41p(.v +U) +7.Q-0(-0
at r. at~p + -0 ,(-0J

where

P Pi + .. - a / and

1.3 '.3 i 3 ir. 8(p/br.i)1

2a au 2

Qi (P + v2/2 + sT)pv. - - - Pv)

Note the stiess tensor is no longer diagonal so that Pascal's law is

not obeyed by a dispersive system. For isentropic flows (s-constant)

Kelvin's circulation theorem and Lagranges theorem follows as for non-

dispersive fluids. For s constant (1-17) becomes:

2i; . V)u =-7(4+ sT - 7i

so that 1 2 + p +U - 8U

is constant along a streamline and for irrotational flow:

2 a1
v-Ve and -+- + I + sT -7. - constant (1-21)

at 2 a vip

throughout the fluid.

12



Taking the time derivative of (1-12) and subtracting the diver-

gence of (1-20) yields
2 2

P 2 P P , (1-22)

2t28r r {pvv - r j "rp-

We will be concerned with the leading effects of dispersion so we now

specialize to a system where

1 *2U = UU(s) + (p,s)(Vp) (1-23)

so that 4th and higher powers of (ic) are ignored, in which case

_ =--) + -  
(1-24)

aI apYa- P= e)ip (1-25)

P = Po(P' s)  + 44 P -0( - 6

In the perturbation method that we will employ, the fluid varia-

bles are expanded in the series:

P0 P e + 6P," 6P =  C n Pn

-v ; 6v,. C va(1-27)

+ a 6s ; 68 a e ans

where Pe and se are the constant density and entropy of the equilibrium

state, £ is a measure of the deviation from equilibrium, and the set

.4. thof functions (P%?vnW s are n order corrections to be calculated inan

iterative scheme. The fluid variable expansions are substituted into

the fluid equations and since the quantity C is by hypothesis small,

13



we demand that the equations be satisfied for each power of e. Iso-

lating terms of the first power in e, we obtain the linearized fluid

equations from which the first order solution (P 1,Vs 1 ) is determined

subject to given initial conditions. The nth order equations are linear

in the functions PMs M and vM, and are comprised only of those m sm,

and v for which m is less than n. Thus, once the initial conditionsm

are specified we can determine O,s and v to any order of approximation

by iterating.

The specific entropy is constant to all orders of approximation.

To prove this assertion consider the nth order equation for entropy:

-s v I.Vs ". v -V s - 0

i- n + n-I + +

If 9 is constant for m less than n then sm-O implying that sm is
m t

constant. Since the entropy at equilibrium s is constant, s for all

n is constant by induction. Thus the dependence on "s" will be sup-

pressed from now on. Equations valid up to second order car be obtained

be keeping terms of order (6p) . Expanding the pressure (1-26) we

obtain
2 2

- PoIh (8Po (s5 !foI 2
- e) 5 + ' a2 e 2 ) •

Similarly for the energy density we have

(PY eUo +) bp 2! 0 b 6p + p ;7y .OP]e. (1-29)
Pr~r k e7 8 r? 3 9 bri brj

so that (1-22) becomes (valid to second order in 50)

14



j a |

2 2

}(OPI I(78P0 - 6~p aIP(Y02____o_ 8P e ap - P (1-30)

where:
2 2p

O3 -a +cV 4av , ( PT) ,and c L --Ole8t •p

The underlined terms in (1-30) are nonlinear as well as dispersive.

These will be small for the cases which we consider as we will be

concerned with the leading effects of nonlinearity and dispersion.

Thus the equation which forms the main focus of this thesis is

a 2 2

000 - 1(6 a)( oI v (1-31)
ariarj Y 2 ~2 i j I

The dispersion arises from a (the dependence of U on (10)2) and the

nonlinearities are due to the doppler shift and the deviation from

Hooke's law. Employing the expansion (1-27) the equation of motion for

P is:

DPi - 0 (1-32)

from which v 1 can be found by

-1 + P V (1-33)

The dispersion law is from (1-32):

2 ,22 4 (1-34)W *ck + ak

15



The equation of motion for P2 is

2 2

\<P-'P ) 2o] Pe'liivij ~'(1-35)

and v2 can be determined again from the continuity law:

a + 0 -0- (1-36)

In Appendix A we use the first and second order equations to show

that a wave packet traveling in a given direction generally breaks

into two pieces: one traveling at the long wavelength speed of sound

and the other at the group velocity of the wave packet. We calculate

the momentum, mass, and energy in these pulses and compare it to the

properties of fluid solitons which are quite similar except for sign

differences. The following table summarizes many of the properties of

the dispersive fluid pulses and solitons.

momentum/mechanical energy mans velocity

wave packet v /(V 2 c 2) >0 >c2 8

dk soLiton UA/(u 2  c2  <0 <

Wwae packet 8 A/(V 2 _c2<0 cd w) <02 1 $

soliton uA/(u2 - c 2) >0 >c

In the table, v and u are the group velocity and speed of the packet

and soliton, and - dLc
c do

16

.. .. ... .....



In Appendix A we also discuss the relationship of the pulse momentum to

the Rayleigh and Langevin radiation pressures.

17



CHAPTER II

SCATTERING OF SOUND BY SOUND IN A DISPERSIVE CONTINUUM

In this chapter we calculate the scattering of sound by a back-

ground of sound and show how these effects are sensitive to the dis-

persion of the medium. We will use the dispersive fluid equations to

third order in the amplitude which involves therefore two iterations

of the perturbation scheme. We imagine that the background is made up

of a superposition of traveling waves and focus our attention on a

given impressed wave which interacts with each of the background waves

via the nonlinearities. At the first order of interaction the non-

linearities generate sum and difference frequencies of the impressed

wave and background. At the next order of interaction there is

generated waves at the same wavenumber and frequency as the original

wave. This constitutes a correction to the original wave due to its

nonlinear interaction with the background and yields the attenuation.

For the impressed wave we take for the velocity and density:

+ A ka +
v k A'exp(i a iw t) + c.c. and 6pa  - e a"k a (2-)a a (*a a a

where c.c. denotes complex conjugate and w a(k ) is determined by

(1-34). Similarly for the background we set

A + k *
v(k) - kB(k).exp(ik .r-iwt) + c.c. and 6p(k) - .'Pev'k . (2-2)

The first order equations are solved by the sum since superposition
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applies in the linear approximation:

= v(k) +va and P 50 + 6P

As we are interested in the change of 6pa due to the background we will9a

neglect terms which go as (6oa)2 which are due to the self interaction.

Our assumption that the dispersion is not too strong or ak2/c2<<i

causes the significant contribution to the wave scattering to arise

from nearly collinear waves.

To find the first nonlinear correction (02,2) we solve the

second order equation which is written below with the first order

solutions (2-1, 2-2) substituted:
2

P P2 - -2A eABI (kat k) exp(iQ :) + c.c.S±
where

2 2 4 p dc0z -- 2 c- + 0V , A 0 1+----_

atc dp

and Qi (k + k)-r - (w ± w)t
Sa a

The particular solutions for (P2,v2) are found by crying solutions of

the form:

P2 =  V exp(iQ ) + c.c. and v2 - W±exp(iQ±) + c.c.

and then solving for V± and W±. The homogeneous solution, which is a

solution to the linearized equations, is chosen so that the whole

solution satisfies the initial conditions: the conditions being that

o for n>l vanish initially since our first order solution is con-
n

structed to give the initial density and velocity fields. The whole

solution is found to be:
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P2 a Pe (ka± k)R± + c.c. ad v2- c (kat k)R± + c.c. , (2-3)

where
(•xp -iw Ca ±w)t) -ex(- iw±t))

R+ = -2AAB(ka± k)exp(i(a ±)r) ' -)2 (Ci)

and

(kat k) +

That the sound wave amplitude must change in the process of pro-

ducing (Q2 ,v2) can be proven using energy conservation. We find the

quantitative change from 03 which is determined by solving the third

order, perturbation equation:

22
O0 2p . (2-4)

"r.-r. \p 2 1 P26ij + Pe(VliV2j v2ivlj

where we have ignored terms cubic in first order quantities since their

effect, which is studied in Appendix B, is to alter the sound wave speed

but not the amplitude. Also in Appendix B we show that there are dis-

persion effects that have a logarithmic dependence on the sound fre-

quency. The attenuation effects are stronger since they result from

resonant mode coupling at both orders of iteration.

The change in the sound wave amplitude is identified as the

amplitude of that harmonic component of p3 which has the same wave-

number, frequency, and phase as the sound wave. This harmonic component

is generated only by those terms in the differential equation corre-

sponding to these same characteristics. Therefore, when we write the

20



equation (2-4) with first and second order solutions (2-1, 2-2, 2-3)

substituted, we remove all but the relevant terms:

2 2 A * 2 2
P3 e -Aa 1p ckaA exp(ik ar-iW at) ((wt W) - a)Qu + c.c..

where

± cos((.-Wa;w)t) - 1

Q±- (ka k) ((- )22)(W (Wa± )

The relevant solution, which is found in the same way as for P2' is

2 22 *
P3 - AIB 14P eck A exp(ik r-iW a) Q+ + c.c.eaa a -

The change in the sound wave amplitude is the amplitude of this

solution:

&A a4AI 2 c2 A 2k 2 Q_ + Q+ (2-5)

At resonance where w±-(w ± w)-0, the Q± grows quadratically in timea

whereas off resonance the Q± is bounded and oscillatory. When disper-
cik2

sion is weak (i- <<I), resonance occurs when the angle between the
c

directions of propagation of the sound and background waves satisfies

2 3a 2 2 3a 2
e - (k + k) or (e-n) a- (k - k)

C a c a

from which we infer that for resonance the waves must be nearly col-

linear and a must be nonnegative.

To find the change in the sound wave amplitude due to nonlinear

interaction with a background distribution, we integrate the change due

to the single background wave treated as a differential piece. To
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characterize the background, we let E(k,f) be the background energy

density per unit wavenumber at k and per unit solid angle in the fi

direction. We choose the amplitude B of the single background wave so

that its wave energy equals the background energy in the interval dk at

k and in the solid angle M at k. Since the wave energy density to1

second order is 1 0eIB12, we choose B to be given by

2 2 e

IB I -. 5.eE(kk)'dk'{

Using (2-5), we integrate the effect of this differential piece to find

the change in the sound wave amplitude due to the background distribu-

tion:

2 2 2
&A- A-, A k dk _

where -Q r A(k,k) .

The angular integration can be approximated for long times because

the quantity Q± becomes peaked about resonance. Since the main contri-

bution to the integral comes from a solid angle centered at resonance

and whose width is inversely proportional to time, we can approximate

the integral by expanding the integrand in the angle about resonance:

A 2 2
dE(k,k) sin ( (-P+e /2 + R+)t/2 )

k± fo 4kac (ka± k) (-P+e12 - R)

where

ckk a  and R+ a !a-klka+ k •

=ka+ k - 2c
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Using the substitution y - P±e2+R+ and for large times letting the
2

upper limit of integration extend to infinity, we are left with

2 AT  - -. k,k.)" (2-6)

8P±
where

'0 2
I sin (y) dy

xJ 2

-R~t/2 y

For times such that ItR4. >> 7, the value of I depends on the sign of a:

if a < 0 , then I S 0

if a > 0 , then I 9 2

When itR+ << iT or if a-0, then Il.

That Westervelt's prediction for the attenuation of sound in

liquid helium is for some cases roughly half the experimental value is

simply explained by the sensitivity of the attenuation upon the nature

of the dispersion.14  Using the result (2-6), the change in the sound

wave amplitude due to the background is AA - -tA$, where 8, which is

defined as the attenuation coefficient, is given by2 n2
2 21 k* k A f (ka-k A

0(k a )  t -.A J E(k,ka)dk - E(k,ka)dk
2p e  c k

+ (k k E(k,ka)dk (2-7)
o ic

Treating thermal motion as the background, Westervelt used nondispersive

hydrodynamics for his prediction for which a is zero and the value of I

Is unity.4  However if a>O, then the value of I can double.

The attenuation coefficient (2-7) has three terms each of which
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corresponds to a specific process. The first term is the attenuation

due to those nonlinear interactions for which the sound wave and the

background waves interact to produce waves at the sum wavenumber (k+ka).

The second and third terms correspond to the processes that produce

waves at the difference wavenumber (k a-k). The second term, which is

the contribution from those background waves for which k a>k, is negative

and therefore the sound wave is amplified in these processes.

Media for which c>O have a dispersive nature that has been labeled

d2anomalous. Our experience with most materials is that - < 0, however
dk

2 -

upon examination of the dispersion relation (1-34) it is evident that a

positive a implies that d2W > 0.
dk2  5

The specific heat measurements of Greywall indicate that the dis-

persion of liquid helium at low pressures is anomalous for long wave-

lengths.

With the implications of the specific heat measurements at high5I
pressures, 5 we can explain by using our calculations why the attenuation

of sound in liquid helium decreases dramatically when the pressure is

raised past 18 atmospheres. The specific heat measurements show that

the dispersion of liquid helium becomes normal (oL<0) at pressures above

18 atmospheres. However if a changes from positive to negative, our

calculations have shown that the value of I, upon which the predicted

attenuation is proportional, drops approximately from two to zero.

For long times the decay of the sound wave in the presence of a

background is exponential. Though in our perturbation scheme we

implicitly assumed that the sound amplitude was nearly constant, we

extend its validity by taking the amplitude to be time dependent. Then
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in the interval (t,t+dt) the change in the amplitude is given by the

differential equation:

dA - -0.A(t)dt

-Bt
which is integrated to give A(t) - A(o) e-

The attenuation of sound in liquid helium at low temperatures is

understood as resulting from the nonlinear interaction of the sound

with the background of thermal motion. It is known from statistical

mechanics that the thermal background is isotropic with the energy

density per unit wavenumber given by the Planck distribution.

To obtain a numerical value for the attenuation of sound in liquid

helium at low temperatures, we will insert into our calculated attenua-

tion the values for the speed of sound (c), the density (P) and the

Gruneisan constant (A) which are given by the experiments of Abraham

et al. The predicted attenuation will then be compared to the experi-

mental results 6 for which the attenuation was measured for sound fre-

quencies between 10 and 260 megahertz, temperatures between .10 and 10K,

and pressures between 0 and 25 atmospheres.

For the range of frequencies and temperatures covered by the ex-

periments, the expression for the calculated attenuation takes the fol-

lowing approximate form:

624

0 5e 2n k) Wa4 (2-8)
l50eh C6

where kb is Boltzmann's constant and h is Planck's constant. The

simplification arises because in the experiments the sound frequency
hw

and the temperature satisfy the condition: kbT << 1. This condition
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implies that most of the energy in the Planck distribution resides in

wavenumbers much greater than the sound wavenumber, which allows us to

take as zero the value of the sound wavenumber as it appears in the

limits of integration in the attenuation expression (2-7). The attenua-

tion then becomes proportional to the total energy which is given by

statistical mechanics.

Using the experimentally determined values of the bracketed

cuantities in (2-8), we find the predicted attenuation coefficient for

sound in liquid helium at zero pressure as a function of frequency (in

radians per second) and temperature (in degrees Kelvin) to be

-6 4
- 1.5x10 t( aT (dB/cm)

Figure 1 is the plot of the predicted (I-i and 1-2) and measured

attenuations versus temperature for a 15 megahertz sound wave in liquid

helium at zero atmospheres. (The figures are on pages 29-32.)

Figure 2 is a plot of the measured attenuation versus frequency at

zero atmospheres and .2* Kelvin. The solid lines are the predictions

of our calculation (1-2) and Westervelt's (I-l).

Figure 3 displays the measured and predicted (1-1 and 1-2) attenu-

ations versus pressure for a 256 megahertz sound wave in helium at .22*

Kelvin.

Figure 4 shows the measured attenuation versus temperature for a

15 megahertz sound wave at a pressure of 25 atmospheres. The predicted

attenuation is zero because the dispersion is normal (a<0) above 18

atmospheres. For temperatures above .6* Kelvin, the attenuation is not

zero as predicted because the sound is interacting with "rotons" which
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are high frequency thermal components whose energy grows rapidly with

temperature.

We can explain by considering bandwidth effects why the experi-

mental points in Figures 1 and 2 might lie between our prediction (1-2)

and Westervelt's (1-1). Bandwidth effects result from the uncertainty

in frequency inherent in any decaying waves. In our case both the

sound and thermal waves are decaying and if these decays are large then

the approximations made in evaluating the integrals over the background

distribution become poor. In Appendix B, we use a Green's function

technique to show that the effect of this bandwidth is to multiply our

calculated attenuation by the factor:

1+ ~ arc tan(?3 (2fkbT 2

2 hc' wa

where T is the lifetime of a typical background wave. Including this

factor, we find our attenuation is equal to Westervelt's at frequencies

where a bT( TaT<<l and is twice Westervelt's at sound frequencies where

the inequality is reversed.

The frequency dependence of the attenuation predicted by using the

bandwidth effect does not agree with the experimental points of Figure

2. Possible explanations for the discrepancy between theory and experi-

ment may arise from considering the following: misinterpretation of the

data, long thermal lifetimes, or attenuation due to interaction with

second sound. For the first point, the experimental data may have

systematic error because to find absolute attenuations, risky assumptiona

were made about the temperature dependence of the attenuation

Secondly, it may be incorrect to assume as we did in calculating
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the bandwidth effect that the thermal lifetime is shorter than the sound

wave lifetime. Although the dispersion in liquid helium is anomalous at

low wavenumbers, it is always normal at sufficiently high k. Thus there

is an inflection point - -01 at some finite kk i. If the backgroundkdk 2

is concentrated at wavenumbers greater than ki, then the background

would be quite long lived, perhaps with a lifetime longer than the

impressed sound wave. This case would correspond to a dispersion rela-

tion such as w2-c2 k 2+k -a'k 6. Although the results will be different

from those calculated here we believe that the same procedure will work

and may account for the discrepancy.

Finally there can appear in the distribution of sound waves com-

pressional modes of the local energy density or so-called second sound.

The appearance of the new mode is a spontaneous symmetry breaking in

the nonlinear hydrodynamics. Now there can appear new nonlinear pro-

cesses in which the sound wave interacts with second sound and that

can still further complicate the comparison of these results with the

properties of liquid helium.
1 6
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CHAPTER III

BOLTZMANN EQUATION FOR SOUND

In the last chapter, where we considered the nonlinear interac-

tion between a sound wave and a background, we assumed that the back-

ground energy distribution was constant in time. In this chapter, we

determine the nonlinear self-interaction of an isotropic background,

and express how the background distribution changes in time via a

kinetic equation derived from the hydrodynamics. If we impose a Debye

type cutoff, the stationary background distribution of the kinetic

equation is a "white noise" distribution. Next we present a reasonable

method of adding the zero point motion contributions to the kinetic

equation. The form of the zero point distribution is determined using

the kinetic equation and a law analogous to Wien's law for radiation.

With this form, the improved kinetic equation has a stationary solu-

tion that is a Planck distribution. The chapter ends with the presen-

tation of a classical H-theorem and a discussion of some effects of

zero point motion.

To simplify the discussion we will impose the restrictions that

the medium be nondispersive and that the background be low enough in

energy so that its self-interaction can be considered as being the

collection of binary interactions between the harmonic components that

constitute the background.

Our imediate goal is to derive a kinetic equation which gives

the time rate of change of u(k), the background energy per unit
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wavenumber at k or so-called spectral intensity. This background

energy at k changes not only by its direct interaction with the rest

of the background but also by restituting processes resulting from the

binary interaction of other background pieces. The change due to

direct interaction is determined directly from the attenuation of sound

calculated in the last chapter. The effect of the restituting pro-

cesses is found with the additional use of energy conservation which is

a property of the nonlinear continuum mechanics.

For an isotropic background, the time rate of change of the back-

ground energy at k due to direct interaction is the same as that of a

sound wave of wavenumber k and equal energy. Having shown that for a

sound wave the rate of change of the density amplitude, A, is given by

d A(ka ) - - (k )A(k
dt a a a

and knowing that energy is quadratic in amplitude, we deduce that the

time rate of change of the background energy density u(k) for direct

interaction is expressed by

-u(k) - ,2(k)u(k)
dt

where B(k) in terms of u(k) was derived in the last chapter:

e(k) - ' A{J' (k;q) u(q)dq + (k-q) u(q)dq - J q u(q)dq}.8pcU q fk q

To complete the kinetic equation, we must find the rate of change

of the background energy density due to restitution. When two waves

interact they produce waves whose wavenumbers are equal to the sum and

difference of the wavenumbers of the interacting waves. It follows

that in a restituting process, the background energy at k changes
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because the wavenumber k is either the sum or difference of the wave-

numbers of many pairs of directly interacting background pieces. The

changes due to the sum and difference cases will be treated independ-

ently and will be calculated for single pairs of interacting background

pieces by using energy conservation from which we know that the energy

gained in restitution is the energy lost by direct interaction. The

total restitution will be given by an integral over all possible in-

teracting pairs.

We begin by focusing on the single sum process in which the back-

ground energy in the interval AK at wavenumber (k-q) interacts with the

energy in the interval dq at q to restitute energy to the background at

the sum wavenumber k. The time rate of energy loss of these interac-

ting waves can be obtained by dissecting our kinetic equation for

direct interaction, which is

d u(k) - -20(k)u(k) (3-1)

The attenuation coefficient for a sound wave of wavenumber k resulting

from Just sum interaction with a background is given by the first term

in the brackets of the expression for 8(K):
2p 2

( ) . K (+ q) u(q)dq , where Q A l2 0 q e

Singling out the contribution of the energy in the interval dq, sub-

stituting into Eq. (3-1) and letting K-k-q, we find that the time rate

of change of the background energy in AK at (k-q) for our single sum

process is 2

kd u(k-q)&K - -Q u(q)dq u(k-q)&K
dt q
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Likewise, the rate of change of the energy in dq at q is

2
d, u(q)dq - - k u(k-q)&K u(q)dq
dt (k - q)

Since the energy lost by both waves in direct sum interaction is gained

in restitution in the interval AK at k, we deduce that

2
u(k) - Q k u(k-q)u(q)dqdt q(k- q)

Integrating this expression over all possible pairs of interacting

waves, we have the rate of change of the background energy at k caused

by the restituting sum interactions:

lc12 3
d_ u(k) WQ k k u(k-q)u(q)dq . (3-2)t 0o q(k - q)

The contribution to the kinetic equation from the restituting dif-

ference processes, which is calculated in the same manner as the sum

processes, is

a 3
d u(k) Q k u(k+q)u(q)dq (3-3)

dt Jo q(k + q)

In calculating this contribution, we use the attenuation coefficient for

sound interacting with a background via difference processes:

dif(k) " a (k q q) u(q)dq - (k q ) u(q)dq (3-4)d f 2 0 q q

The significance of the two terms is that when two waves interact in a

difference process, the wave of lesser wavenumber gains energy while

the wave of greater wavenumber loses.

The complete kinetic equation obtained by adding the contributions

of the direct process (3-1) to that of the sum and difference
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restituting processes (3-2, 3-3) is

k/ 2 3
I d u(k) -(k)u(k) k/2 k u(k-q)u(q)dq +
Q dt Q 0  q(k - q)

. 3

0 q(k k q) u(k~q)u(q)dq (3-5)

We will refrain from application of this equation until we improve it

with the inclusion of zero point motion contributions. However, we

mention that if a wavenumber cutoff is imposed analogous to that which

Debye argued for solids, then the kinetic equation has a stationary

distribution (i.e., du(k) - 0) of the form:
dt

2
u(k) - constant x k

which is representative of the statistical mechanic notion of equiparti-

tion of energy.

Our attention is now directed toward determining how the kinetic

equation is altered by zero point motion. Though the effects of zero

point motion has traditionally been thought to be outside the domain

of classical physics, we will show that it is possible to introduce

zero point motion in a classical vein. The zero point motion is postu-

lated as an immutable energy distributed uniquely over all wavenumbers,

existing even in the absence of thermal motion, but nevertheless able

to interact in some restricted sense with other waves.

The implementation of our postulate becomes apparent when we con-

sider a sound wave in the presence of a zero point wave. We would like

to treat the interaction of the sound wave with the zero point wave in
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the same way as any two waves, but since the energy in a channel which

has only zero point energy cannot diminish, we must somehow restrict

the interaction. For the case of two waves interacting in a sum pro-

cess, both waves lose energy; therefore if one of the waves is a zero

point wave whose energy cannot diminish, the sum process must be elimi-

nated. In the difference process, the wave of lesser wavenumber gains

energy and the wave of greater wavenumber loses. As in the sum process,

the possibility that a wave of greater wavenumber in the difference

process be a zero point wave must be eliminated, but we may allow a

sound wave to interact with a zero point wave of lesser wavenumber if

the energy normally gained at the zero point wavenumber is placed into

sound wave energy at that wavenumber.

To calculate the zero point contributions to the kinetic equation,

we utilize that the interactions of the background waves with the zero

point waves is just a subset of the interactions of the background

self-interaction whose contributions to the kinetic equation have been

calculated. The time rate of change of the background energy at k

caused by zero point motion is due to difference processes of three

types:

1. The direct interaction of the background energy at k with

zero point waves of wavenumber less than k,

2. The direct interaction of the zero point energy at k with

background waves of wavenumber greater than k,

3. Restitution from the background energy at (k+q) interacting

with the zero point energy at q (for all q).

For each of these types, the time rate of change of the background
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energy at k caused by the background has been calculated to be, respec-

tively,

(1) - u(k) q _q)u(q)dq

2
(2) u(k) f k  q u(q)dq

3 3

()q(k+ q) u(k+q)u(q)dq

As an example of how this procedure works consider the change in

energy in channel k due to sound in channel q<k due to difference pro-

cesses:
2

d u(k)dk - - k - u(q)dq u(k)dk (3-6)dt q

where we have used (3-1, 3-4). Similarly for q>k, we have

2

d. u(q)dq - Q (k q) u(k)dk u(q)dq (3-7)
dt k

Next on the right hand sides of th3e expressions we replace u with u+v

and focus attention on the contribution linear in the zero point energy

per unit wavenumber, which we will label v, (the terms quadratic in u

have already been incorporated into (3-5)):

2

u(k) , _ (k- u(q)v(k) + u(k)v(q) ] dq (3-8a)
dt q

2

u(q) . Q (k :_a)[ u(q)v(k) + u(k)v(q) ] dk (3-8b)
dt: k
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so that from (3-8a) we see that the process whereby a zero point fluc-

tuation of wavenumber k interacts with an excitation of wavenumber q is

forbidden since it removes energy from channel k. Deleting this term

from (3-8a) and (3-8b) yields direct and restituting contributions to

the change in energy density given by expressions (3-6) and (3-7) above

with u(q) replaced with v(q). Replacing also the background energy

density of lesser wavenumber in the B(k) in (3-1) with the zero point

energy density (i.e. u(k)- v(k)) we find the zero point contribution to

the kinetic equation which combined with (3-5) yields the complete

kinetic equation: 1 d k I
'.u(k) - <Lu(k)(P(k) + (k-q) v( q)dq) +Q dt q

k/2 3 * 3
k u(k-q)u(q)dq + k u(q)u(k+q)dq

o q(k-q) d 0 q(keq)

a 2 - 3
+v(k)f kq) u~qd +k qukqdqq 1 q(k~q)v ' uk Yd

The stationary solution of the kinetic equation is the background

equilibrium distribution. To find this stationary solution, we must

first determine the form of the zero point distribution.

Using the kinetic equation and a fluid law analogous to Wien's law

for radiation, we are able to show using the second law of thermody-

namics that the zero point distribution is of the form:

3
v(k) a Ack

where A is an undetermined constant. The fluid law, which is proven

in Appendix C, states that the background equilibrium distribution

must have the form: 3
u(k) - ck f(ck/T)
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where the function f is as yet unknown. Substituting this form into

the kinetic equation we find that all the terms involving quadratic

powers of u yield expressions which are homogeneous functions of T and

k of the eighth degree. That is replacing T and k with aT and ak yields

a8 times the original expression. Thus if there is to be a non-trivial

balance between the zero point terms and the thermal terms the expres-

sions involving v must also be homogeneous of degree 8 which means that

3
v is proportional to k

The equilibrium background distribution, which is the stationary

solution to the kinetic equation subject to Wien's law, is a Planck

distribution:
3 -

u(k) - ZAck (exp(yck/T) - ) -

where Y is a second undetermined constant. That this is a stationary

solution to the kinetic equation can be shown directly with the follow-

ing identities:

f(q)f(k+q) - f(k)f(q) t f(k)f(k+-q) t f(k (q±q)/2)

where f(k) - (exp(ak)-l)- . Of the two constants, A and Y, only one

must be found by experiment since at high temperatures the equipartition

of energy determines the ratio:

A 4b
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Einstein and Stern 18 by considering the scattering of a charged

particle by an electromagnetic field attempted to derive the Planck

distribution from classical mechanics by assuming a particular zero

point noise spectrum. Their results were off by factors of two. Here

by considering self-consistently the scattering of sound by sound we

have arrived at the proper thermal distribution as well as the zero

point spectral intensity. These arguments have now been extended to

the nonlinear electromagnetic equations by Roberts.
19

That an "H-theorem" exists can be proven with the kinetic equation.

If we let H be defined as

1 - Jo d(1nk)( (u(k)+2v(k)).1n(u(k)+2v(k)) - u(k).In(u(k))
aJ

then using the kinetic equation and the cubic form of the zero point

motion we can show that

dH 1 -f MdK Jdq u(q)u(K)u(K-q) (a-b)tn(a/b)
dt A 2 qK(K-q)

where

(K 3  
3

a + and b - (1 + K /u(K))
u(K-q)

dH

Since the integrand is always positive, we conclude that i > 0, which

is the H theorem. Demanding that H is stationary and imposing Wien's

law for fluids, we again obtain the background equilibrium distribution.

As a final application of the kinetic equation, we calculate the

attenuation and decay spectrum of a sound wave interacting with zero

point motion. The sound wave is represented in terms of u(k) as

follows: u(q) - u6(ko- q)
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where u0 is the sound wave energy and k is the sound wavenumber. Sub-

stituting this u(q) into the right hand side of the kinetic equation,

we find that the first zero point term gives the attenuation of the

sound wave:

Q . A2 h Y. k5
dt 30 480 PeT

and the last two zero point terms give the spectrum of decay:

d ( - k /k0  for k<k and zero for k>k
dt0 0

Landau and Lifshitz have suggested that zero point motion effects

for macroscopic variables can be calculated by simply adding the zero

point energy to thermal energy. However, this method would yield an

infinite sound attenuation in contrast with the method presented in

this chapter for which the results agree with quantum theoretical

calculations.

The cpontaneous decay of sound was measured for the first time in

1981 20in an experiment in which high frequency sound was generated in

doped calcium fluoride through the use of laser pulses to stimulate

non-radiative transitions. The sound waves were detected through the

fluorescence they induced in the stress-split energy levels of the

Eu 
2+ doping ions. Phonon lifetimes were obtained from the time de-

pendence of the fluorescence radiation and followed the k5 law.
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APPEND LX A

RAYLEIGH, LANGEVIN AND SOLITARY WAVE

RADIATION PRESSURE IN A DISPERSIVE CONTINUUM

In this appendix we use dispersive nonlinear hydrodynamics to

determine the motion and integrals of the motion for localized travel-

ing disturbances in one dimensional continuous media.

Consider a disturbance which at first order can be expanded in a

Fourier integral

Pj(x,t) - J.dk-pl(k)exp(ikx-iwt) CA-I)

with

w(-k) - -w(k) and p1(-k) - p*(k)

so that the disturbance propagates in the "+x" direction. Similarly

a
J (x,t) - f dk'Jl(k)exp(ikx-iwt)

J dk w(k) p (k)exp(ikx-iwt)
-. k

The inverse formula is:

Pi (k) =L "_.[dk i(x t)exp(-ikx)2w -.
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Substituting (A-1) into (1-36) yields for the second order contribution

to the density

2 - 2  dkdk'A(kk')exp(i(k+k')x-i(+w')t) , (A-2)

where
2

A(k, ') - -(kk'c p)2 c

and A -i + p dc

The solution for P2 which vanishes at t-0 and corresponds to a wave

moving in the same direction as the original pulse is:

-ajifdkdk' A(k,k')exp(i(c+k'_)x) {exp(-i(w&s&)t)-exp(-iw(k+k')t)I
2 -(A$(h) 2 +c 2(lc+k ) 2 +az~l+k')4

which is made up of a particular plus homogeneous solution to (A-2):

P2 "2,p + P2 h

Similarly

J2  j 2,p + 2,h

-dkdk' -A(kk')exp(i(kk')x) 4 X

2 ff (W+W' 2 + 2 (kk') +akkkk))

( -exp(_( )t)- -(k+k' exp(-iw(k+k')t))
k+k' (k+k')

where in each case the term in exp[-i(w+w')t] is the particular solution.
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The distinction between homogeneous and particular solution has a

physical as well as mathematical importance. The trequency and wave

number of the particular solution are not related by the dispersion

relation (1-34). Therefore the particular solution is a property of

the traveling first order wave. It is nonzero only in those regions

where the first order disturbance is nonzero. The homogeneous solution

however is an actual sound wave that propagates at the phase velocity

u(k+k')/(k+k') and can therefore separate (for dispersive systems) from

the original first order disturbance.

By choice of the initial condition

Jp2dx - 0 (A-4)

but

f 2 d - 2ZrA ~edk lp 2(W I (A-5)

2 2 2 (Pe-6

,p x -2 2d 2k) ivg k)((vg(k) - c2) (A-7)
2,p Pe 1

where the group velocity v -dw/dk. Expanding the energy density (1-23)g

to second order:

U + - '(
2/2p )P 2 ,1 2 1 2 A( 1 + (2-e(V8l) )

leads to an energy due to the sound field:
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Jdx u ~2 e2 -edP2  f dx.PeV 1

Sefd.p2 + 1c2 dkl Il( 1k 2/c2 ). (A-9)

From (A-4,5,9) we find to leading order (neglecting corrections of order

ak2/c 2) that the ratio of total energy to total momentum of the sound

field is
2c

d + dc 
(A-10)

c dp

21
which is the result first presented by Rayleigh. Contrary to many

references 1 '22 the ratio is not c (except for a monatomic ideal gas

3
which has the equation of state: PV -CONSTANT). The following comment

should be made about our calculation of the energy and momentum of sound

waves. We have considered only those effects which are second order in

the field. It is entirely possible that the first order solutions 01jI

will have a net mass, energy and momentum. However, we have here

focused upon the quadratic contributions since those are intrinsic pro-

perties of the acoustic field when the system is driven in an oscil-

latory fashion.

The momentum of the acoustic field (A-5) is proportional to A and

vanishes when the equation of state is such that

c a constant/p

For a one dimensional lattice of masses on harmonic springs we have

seen that c-vr-ma -u'/P which provides the proper explanation of
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the statement that "phonons have no momentum." Normally this assertion

is based upon the reasoning that in a crystal lattice as a wave passes

each particle returns to its initial location and therefore the wave

carries no momentum.23 However, the fact that there is no drift in

particle position merely requires fJdt-O which is quite different from

the momentum of the wave which is given by fJdx which is proportional

to A and vanishes, only for the particular equation of state appro-

priate to the usually quantized harmonic lattice.

Next consider a first order disturbance which is peaked so that

its spread in wave number is much less than the wave number "k ". The0

homogeneous solution will separate from the disturbance 3 and its

particular solution so that in time three pulses will appear: one with

a mass and momentum given by (A-6,7) traveling at vg, another with a

mass given by the negative of (A-6) and a momentum given by the dif-

ference of (A-5) and (A-7) traveling at c and finally a pulse traveling

at v g(2k ) which has zero mass and momentum to this order. These

assertions follow directly from substituting a peaked distribution for

01 (k).

Even when there is no net mass in the original disturbance, the

dispersion separated pulse contains a net mass given by (A-6). Thus

the total energy of this pulse involves the chemical potential (A-9).

Neglecting corrections of order ok2/c 2 in (A-9), we find that this

pulse has the total energy:

2wc2  UeA

Pe v2 - c2
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An important distinction can be made as regards the two terms that con-

tribute to the total energy. One of the terms (the first in the inte-

gral) should be regarded as a mechanical energy since dissipative pro-

cesses can eventually convert this part into heat. The other term (in-

volving 1.1 ) will always remain at this value regardless of the irrever-

sible effects. Forming now the ratio of momentum to mechanical energy

for the separated pulse we obtain

vg(ko)A

2 c (A-12)vg(kO) -"

We note that when vg<c, p2,p<0 and if vg>c, 0 2,p>0 and the pulse moves

faster than c.

Bassett and Pryce 3 considered the quantum theory of one dimensional

dispersive waves in an anharmonic lattice. Though they obtained

Eq. (A-12) they did not mention the pulse traveling at v q(2k ) probably

because in the quantum perturbation scheme employed by them the expec-

tation values of energy, momentum vanished for that pulse. Furthermore,

the contributions to the total energy proportional to ue were not in-

cluded in their work. This difference comes about because they con-

sidered the propagation of sound relative to an equilibrium lattice that

is unstressed. For such a lattice We-O; as can be seen from the rela-

tion (VIZ: 18)
E a UV . MA - PV

where E,V,M, are the total energy, volume, mass of the system in the

mechanical equilibrium state (P-0). As is commonly done we take E-0

for the mechanical equilibrium state. Thus if P is also zero in this

state we find that u must also vanish.
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Had we included the underlined terms in Eq. (1-30) and so cal-

culated corrections to the momentum (A-5) of order ak 2 /c 2 we would have
0

found

WfdxJ2  -d'p _ - vAfldkI P (k)I (A-13)f Pe 2c2 dP 2 • 1

where of course (P2((k)) is peaked near k . The corrections proportional
1 0

to k2 still vanish for the ID harmonic lattice because in that case
0

5 5T-a/O/,a "l/0 . In general the terms will not vanish.

The relation (A-12) for the ratio of momentum to energy has

strong similarities to the properties of solitons24 which are solutions

to Eq. (1-36) in one dimension that have a stationary form:

P - Pe + 6P(x-ct) (A-14)

From the continuity law this requires the mass flow to be

J(x-ut) - u6p(x-ct)

so that Eq. (1-36) yields

(2 _ c2) I6p -C [dc + 22 16 2(U c2)6P + a 62C ,. I dp . (5O) (A-15)

where terms cubic in 60 have been dropped along with two space deriva-

tives. This can be integrated directly to yield

I

6P 3(c2 - U2)p e sech 2 Jf c2 - U2 )T( _u) (-6
-- 24c2  4a JC -u) (-6

where we have taken a>O so that u<c. Thus when the sound pulse travels

at v >c the soliton moves slower than c, so that the mass contained in
g
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the sound pulse has opposite sign to that of the soliton. From (A-16)

we see that the small quantity for a soliton is c-u. If we set

C- u e < (A-17)
c

then

6P(0,0) - + higher orders in e
A

26 - --2. higher orders in C (A-18)

8X2 (zA

so that differentiation of some property of a soliton increases its

order of smallness. For a sound wave both amplitude and phase are in-

dependent but for the soliton the two are related by the requirement

(A-14). In view of (A-17) we were justified in substituting c for u on

the right hand side of (A-15) in order to arrive at (A-16) valid to this

order of accuracy. Similarly to the order of E used here the underlined

terms in Eq. (1-30) are higher order.

The momentum of the soliton is

JdxJ - ufdx6p - u 2 jdx(6P)2 (A-19)

U2- c
2 P

Introducing the mechanical energy as before we find that the ratio of

momentum to mechancial energy for a soliton is

uA (A-20)

u2 - c 2

With ci>O a soliton exists with negative mass moving slower than c.

There is another wave packet which has kinematic properties very similar

to this soliton (see Eq. A-12) which moves faster than c and however
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spreads (disperses) very slowly in time. The inverse scattering
25

method makes very general statements about how initial disturbances

evolve into solitons. If the initial pulse has the appropriate sign

then at a sufficiently later time (neglecting dissipation) at least one

soliton must appear. Thus one might wonder if the dispersion separated

pulse will eventually turn into a soliton. The answer, however, is no

for as we have seen the net mass in the acoustic pulse has opposite

sign from the soliton appropriate to the given sign of a.

Another quantity of interest in acoustics is the so-called Langevin

radiation pressure26 which is the net force exerted on a unit area of

side wall as a wave runs down the tube:

FL Idt(6P) ,

where to second order the pressure is

+ c2p2  c + I d-T (VPI)2

Using (A-3) for 02 we find for FL

F [P- c- Jdk -P2(k)

which is the usual result. The contribution to the Langevin pressure

from the dispersion separated pulse is given to usual order of accuracy

by:

F ac2fdt~p ' c A. (dt-p 2Lp P2d'P, dp
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k2 dTP5

Sc4 27Pac P,(k)dk. (A-21)

e v (v2 - c2 ) ap
g 9

To leading order in k 2/c2 the term in A dominates the others. We have

included the term in do 5/do which comes from the underlined term in

Eq. (1-30) since it is of the same order in ak2/c 2 as the usual term

cdc/do. For a harmonic lattice the term in cdc/do is the leading term.

It must be noted that although this result becomes singular in the

limit v -c it also requires more and more time for the wave packet tog

separate in this limit.

A connection can be made between the nonlinear continuum coef-

ficient A and the anharmonic terms in the one dimension lattice.

Generalizing (1-3) to:

Lu z -V (A-22)
j 2 J

where the potential energy is

v-2 = 1 '- (xi - x i - a0 ) n  (A-23)
n=2 i.1 U1~9

where xi-position of the particle which in mechanical equilibrium is

located at "ia " where a is the unstressed (P-0) equilibrium separa-o o

tion. By definition the 0n are independent of "P". If a steady ex-

ternal force "P" acts on this system the equilibrium spacing will change

to "a" such that

n2 On (a )n-(
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determines a(P). The speed of sound for this one dimensional anhar-

monic lattice is

: ...a2 a. n-2 (A-25)

m a mni2 (n-2)!

and

1 d-L= 1- i.. e----- - (- %) a on n-3

c dp c da 2mc2 n.3 (n-3)!

In the stressed lattice we can refer the x i+i-x I to the separation "a"

by rewriting (A-23) as

V - C! X x '-a+a- a )n (A-27)

n 2 i-I, + 14 i

and using the binomial expansion coefficients cMn to write

Vu -Cx - x - a )a (A-28)

where

n ! !M- c (a - aa) (A-29)
n1 man ml

yields the effective spring constants of the stressed lattice in terms

of the spring constants of the unstressed lattice. In particular

S2 (a )  2 c m2(a - a) m -
2  and

2 m

03(a) 6 3---c 3(a- a)
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and the term in 0 adds a constant to the potential whereas the term0

in (1 corresponds to a telescoping series which also contributes zero

to the potential. Note also that:

-a ( (a) a - (a) and - " 0 (a) (A-30)
6 2 3a

Since
(a) = - p

we find for the sound velocity

c2 . a2 0(a) (A-31)
i 2

and for the Gruneisen coefficient

AI+ E dc a03(a) (A-32)
C dp 202(a)

which relates the hydrodynamic nonlinear parameter to the cubic anhar-

monic coefficient of the lattice for the one dimensional problem.

A precise transition from the Lagrangian (A-22) to the nonlinear

hydrodynamics can be made by replacing

I f dX
I

2x _--e
ax P

x(x+a) - x(x) + a- +

where x(x,t) is the location of a particle at time t which was at

point x at time "0", so thatv *
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APPENDIX B

THE EFFECT OF DECAY BANDWIDTH ON ATTENUATION

In the second chapter, we calculated the attenuation of sound due

to nonlinear interaction with a background and showed that the magni-

tude of the attenuation was sensitive to the nature of the dispersion.

In this appendix, we show that this sensitivity is absent when either

the sound or background waves are attenuating significantly. We will

also calculate the change in the wave speed that results from the non-

linear interactions.

A sound wave that is attenuating has an inherent uncertainty in

frequency, which is called the decay bandwidth. If this uncertainty,

which is dissipative dispersion, is much larger than the reversible

dispersion then the net effect of dispersion on the attenuation is

negligible.

To calculate these nonlinear effects, we use a perturbation method

developed by Bedeaux and Mazur.2 7 The method is to add to the fluid

equations an external driving force and a fluctuating force. As an

assumption, both forces drive the equations in an approximately linear

manner. The purpose of the external force is to identify a Green's

function, while the fluctuating force by design creates the background.

The presence of the background changes the Green's function through

nonlinear interactions. From this change, we directly calculate the

attenuation and speed of a sound wave.

The effect of the decay bandwidths will be simulated by adding
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to the fluid equations a dissipative stress tensor of a Navier-Stokes

form. The attenuation of sound caused directly by this addition will

be ignored but the resulting bandwidth which will appear in the non-

linear attenuation will be replaced by the true bandwidth.

Before applying the perturbation method, we make some simplifying

modifications and assumptions. First since the external and fluctu-

ating forces are weak, we expand the fluid equations in the small

deviations about the rest fluid, and keep terms which are at most

bilinear in the deviations. Second we neglect the nonlinear terms in

the fluid velocity. (In Chapter II, the velocity contributions were

calculated by a different method.) Third we assume that the wavenumber

of the sound wave is much less than the background wavenumbers.

Finally, we will assume that the dissipative and reversible dispersions

are small.

In Chapter 1, we derived the dispersive fluid equations:

. -
L v Vs - 0 (conservation of entropy) (B-i)

% +'(p ) - 0 (conservation of mass) , and (B-2)at

2i (vVV)v a i.2- au7+J[ (Newton's law) (B-3)
at ap a. F 7P

To expand these fluid equations in small deviations about the rest

fluid, we let

P a p + 6p(X,t) , - 6v( , 0 , and s - s e 8s(+,t)

where o and s are the density and specific entropy of the rest fluid
• •

and the quantities with the prefix 6 are the deviations from rest. We

57

. . ... .. . . .. .... ......



then substitute these expressions into the fluid equations, Taylor

expand the internal energy about the rest state, and keep only terms

at most bilinear in the deviations. We begin by considering the

entropy equation (B-1):

as 1P+-' V-7s - 0
at

Substituting the deviation expressions, we find:

-s + 6v'Vc6s - 0at

This equation states that the deviation in entropy is proportional to a

small quantity times itself, which implies that the entropy deviation

is approximately zero and entropy per mass is constant. Since entropy

is constant, the expansion of the internal energy to second order in

the density deviation is

U(p,s,Vp) U(p 'e 0) , 1+ 2 ,p2  V2

and the two remaining fluid equations (B-2,3) in terms of the devia-

tions are:

L6_ + .(p6) + p 7v * 0 andate

(ve )6v - 78 - 7(6p)2 a 716Vp
at P 2P

where

c2  , p C , and m - aU I
a.2 e  p31 e(p)2 e

If we take the time derivative of the first equation, subtract the

gradient of the second equation, and neglect nonlinear terms in the
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velocity, we have one equation for mass density:

O6P - - 26p2 ,(B-4)

where

SM12 c2V2 +
8 t2

If we had included the Navier-Stokes dissipative tensor in the fluid

equation pertaining to Newton's law (B-3), we would have one altera-

tion:

- C2V2 + MV' + V b2

at2  b at

where vb is four-thirds the shear viscosity plus the bulk viscosity,

which will be assumed to be a constant.

To apply the Green's function method, we add a driving force and

a fluctuating force to the one remaining fluid equation (B-4), which

is our basic equation of interest:

So + .1 726p2 - T(X,t) + F(C,t) (B-5)
2

where T is the fluctuating force and F is the driving force. Next we

Fourier analyze this equation:

(- w. + W(k)2) 6p -L -k 26p2 = T + F
2

where 6 , 6p2 , T, and F are now Fourier transforms and W(k)2 c2 k2 +<k4+
iv bk 2.

When the forces are weak, we can initially neglect the nonlinear

term, and treat the devsity deviations created by each force as co-

existing independently. In this approximation, we let 6omo F+60T,

where 6pT and 6 F are created by the fluctuating and driving forces,
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respectively. The deviations, 6P F and S0T o satisfy the equations:

6p F a G0 F and 6P T a GoT , (B-6)

where G is the linear Green's function: G 0--+W(k)2

o 0

The nonlinear term in the fluid equation (B-5) is the source of

interaction between SpT and 60 . Including this term, we find a more

accurate equation for 6PF

(GO  + L)6 PF

where L is the following operator:

L m- Ck 2 6pT

where it is implicit that L involves a convolution:

Lf - - E2k2fdq 6 PT(k-q)'f(q)

We then formally invert the equation for 6PF and ensemble average over

the fluctuating quantity 6pT:

5pr - GF , (B-7)

where G, which is identified as the Green's function in the presence

of the background, is

G - <(1 * GoL)- >Go

From the singularities of the Green's function, we will determine

both the attenuation and speed of a sound wave. To do this we let the

external driving force be

F(,t)- exp(iko')6(t)
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and then use the Green's function and Eq. (B-7) to find the response

dQF:

69F W exp(ik r)J dw G(w,k) exp(iwt)

Using contour integration, we identify the propagating modes for wave-

number, k, to be

6 - exp(ik.r + iw j t)

where wj are the simple poles of the Green's function for Imu>O. The

The imaginary part of w is the attenuation coefficient and the real

part divided by the wavenumber is the wave speed.

For our fluid equation, the Green's function will be of the form:

G- 2 -w(k)2 + g(w,k)

where the function g will be transcendental. To find the singularities

of the Green's function, we will presume that the presence of function

g does not significantly alter the positions of the poles so that the

dependence of g on w can be removed by setting w equal to its approxi-

mate value in the vicinity of the pole:

G 2 [ i W(k)2 + g(W(k),k)

The pole of the Green's function is at the location:

w - [ W(k) - S(W(k),k) J2

Expanding the square root in a Taylor series about W(k), we find:

w. a W(k) -1
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The imaginary part of w is the attenuation coefficient, B:

- Im g(W(k),k)/2W(k) S (B-8)

and the real part divided by the wavenumber is the wave speed c(k):

c(k) - Re W(k) g(W(k),k)/W(k) ](B-9)

To find the Green's function in the presence of the background

(60T) , we must evaluate the ensemble average of the quantity: (1+G0 L)-I.

We average this quantity by first expanding in powers of L, which is

presumed small, and then approximating by keeping the first three

terms. The terms are 1, G L, and G LG L. The average of the first

term is itself. For the second, if we impose translational invariance,

then <6PT>-O and since -G L-G ok 26PT, we deduce that <-G L>-O. For the

third term, we write the term acting on the driving force with explicit

convolutions:
m rr+ 2G0LGL a 

2k2 G(w,k)ffff dw'd 3 k'dw'#d3 k11G,(w",k 5 1)k" F(w',k')x

p T(k"-k' ,cd-w' ) P T (k- k",w-d")

The ensemble dependence in this expression is in the quantity:

6 *T(k"-k' , "- ')-4T(k- k" a4"l

whose ensemble average requires knowledge of the fluctuating force.

To proceed we must design the fluctuating force to create our

desired background which we assume is isotropic with spectral

intensity u(k). To meet this demand, we let the fluctuating force

satisfy the following correlation relation:
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<T(x,q)T(x',q')> a Web q2u(q) 6(X X') 6(q 4')
4w

One can then verify that for this correlation of the fluctuating forces

the average energy density per unit wavenumber of the sound field is

given by
g fJfdk'dw'dw <6PT(w,k)6(Tw ,I')> - u(k)

where (B-6) is used for 6ST. Using this correlation relation and the

equation relating 60T and T, we have the necessary ensemble average:

OuPT(Xq)6PT(X,'> tevb q2 u(q) IG(Xq)1 6(X+') 6(q ;')
41

The presence of the delta functions is a consequence of imposing trans-

lational invarignce for space and time.

We have shown that the Green's function in the presence of a

background is

G = + + G0 g( , ) )GO

where

g(w,t) = <LG0L>

Since the function g is small, we rewrite this equation in the approxi-

mate form:

G= (G 0  + g(w,t)

When we neglect the viscosity term in Go, we have shown that the atten-

uation coefficient (8) and the wave speed are simply related to the

function g by Eqs. (B-8,9).
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What remains to be done is the evaluation of the function

gF e ck2ffff 'dw'd3kdwhd3 + (cJIkI~~ 2 F~a,'

<6P T(k"-_k' ,"-w') "6P T(k- k" ,W(k)-w") >

Substituting the expression for the ensemble average of squared density

deviation, making the change of variables t=k-t" and r-W(k)-w", and

integrating the single primed integrations, we find:

g" - e k2Jd3K u(K)(K-k)2K2fdr G,(r,K)G0(-r,-K)G(W(k)-r,k-K)

Next we use contour integration to perform the integral over r, which

gives the result:

8c2 p 3 "y+tS-- £ k 2 3()(Kk2 1[(W(k)±14(K)+V 2 K )) 2 2 k
-VC 2 (+ 2 (')) -~~)

To integrate over K space, we will use spherical coordinates whose

z-axis is chosen along k. The integration over azimuthal angle is

trivial and has the value twice pi.

Before proceeding to perform the integration over the polar angle,

we will approximate the denominators of the integrand. Since the back-

ground wavenumbers are assumed to be much greater than the wavenumber

of the sound wave, we will keep only the leading order in the ratio

k/K. The dispersion is assumed small so that we keep only the leading

order in a and vb* With these approximations, the expression for g

becomes
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9 2 2f u(K)(',
-c
2  J K "-v

K2 + k2 Z2kKcose

Integrating over the angle and keeping leading orders in c and vbt we

have the result:

L 2 f dK!. _ (K~kAn co.G ± ,_ 2 c~1k kcs
8c 4  e K + "c2 -T- ) - ZKkco ) -I

To find the attenuation coefficient and wave speed, we must

separate function g into its real and imaginary parts. This can be

accomplished with the following:

1y 1 2 2
ln~i y) = n(x +y ) - i arctan(x/y) + iW/2

Using this relation and evaluating the function g at the limits of the

polar integration, we find:

2 I 2w 2 3a 2

arctan ( K2 ] +. arctan (:1

where ws is the approximate frequency of the sound wave (i.e., ws-ck).
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Before finding the attenuation coefficient aa ,.ve speed, we make

three revisions. First we remove the dependence of g on viscosity by

replacing the quantity -22 , which is. the lifetime of a wave of wave-

number K in the viscous 0fluid, by the true lifetime which we will

label T(K). Second, we include the effect of nonlinear terms in

velocity by redefining e as follows:
= 2c2

C T

where as before

A-i -P dc
c dP

Finally we assume that the logarithm and arctangent in the expression

for g do not vary much over the range of wavenumbers for which the

background energy density (u(k)) is significant. This assumption

allows us to take the logarithm and arctangent outside the integral and

evaluate them at the wavenumber for which the background enery is

peaked. Incorporating these revisions, we find.:

.1 A2k( 1 +-ini J-
e 2 1 + C3a 2 /4c 2 )w st) 2

i arctan(wT) + arctan((3aK2 /4c2)w s)J }

where K is the wavenumber for u(k) is maximum, E is the total energy

density (i.e., Eufdku(K)), and T-T(K).

The relationships between the function g and the attenuation coef-

ficient and wave speed was shown to be Eq. (B-8,9). Using these rela-

tionships and the calculated g, we find to leading order in a and vb: 28
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e w2  a E arctan(wT) + arctan((3K 2 /4c2 )w5 ) ) ard

c~w) ~eA2 + (w 5 T)2 3
2P e 0  1 ++ ((3a 2 /4c 2 )w s) 2

where co is the wave speed in the absence of nonlinearities or thermal

motion.

The assumptions and approximations that we have made in calculat-

ing the wave speed and attenuation are appropriate to describe sound

waves in liquid helium at low temperatures. The background is thermal

motion for which we know from statistical mechanics the total energy

density:
4w5 (kbT)

4

15h
3c3

where T is temperature, kS is Boltzmann's constant, and h is Planck's

constant.

The attenuation and wave speed depend on the product of the sound

frequency and the lifetime of the background waves. When this product

is much smaller than one, the attenuation coefficient becomes propor-
A 2E 2

tional to the sound frequency squared: - TC , and the change

in wave speed due to nonlinear effects is frequency independent:

2A2E  2
c0c  . When the product (w T) lies in the range l<<WT<< 3K

then the attenuation coefficient is the same as Westervelt's result for

a nondispersive fluid, and the change in wave speed is
Ac a A E '4 + ln(l+(wr) 2))

e
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3 j
2

When the product w T is large so that -3-A w T>>, then the attenuation
c

coefficient is either zero or twice Westervelt's result depending on

whether the dispersive parametercits negative or positive, respectively.3-2

The change ia wave speed for w T 3.K' >>l becomes again frequency inde-s 2A2 _ !2 c
pendent:Ac *2 *(4'nIil For liquid helium at 0.0 bars and .3*

e (3a!21 1 2  5
Kelvin, the value of the quantity -i is predicted by experiment to

be roughly one hundred if the dispersion relation is assumed to be of

the form (1-34).

In liquid helium, neither the lifetime of the background waves nor

the fine details of the dispersion have been determined. For our re-

sults, it is clear that no value of the lifetime completely accounts

for the experimental results. The discrepancy may be due to our

implicit assumption that the sound wave lifetime was longer than that

of the background waves.
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APPEND IX C

WIEN'S DISPLACEMENT LAW FOR A PONDERABLE CONTINUUM

In the late nineteenth century, Wien29 derived the displacement

law which states that the electromagnetic radiation in equilibrium has

its energy distributed over wavelengths according to the form:

u(k) - k3 g(k/T) ,

where u is the energy per unit wavenumber, T is temperature, k is wave-

number, and g is an undetermined function. For a fluid, we will prove

that the thermal energy is distributed over wavelengths in the follow-

ing way:

u(k) - ck 3 f(ck/T) (C-0)

where c is the speed of sound and f is an undetermined function. The

appearance of the speed of sound is due to the fact that the sound

speed is not constantunlike the speed of light.

Our derivation of the displacement law for a fluid is outlined as

follows. First we show following the method of Whitham 30 that for a

sound wave the wave energy divided by the frequency is an adiabatic

invariant. Next we consider a quasistatic change in volume and use the

fact that the ratio of wave energy to frequency is constant for each

thermal component to calculate the change in thermal distribution.

From this change, we will show that the thermal distribution as a

function of the volume and wavenumber has the form:

u(k) - ck3 h(k3V)
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where V is the volume and h is an undetermined function. We then use
VT3

thermodynamics and hydrodynamics to show that the quantity - remains
3c

constant for a quasistatic change in volume. Using this fact and the

functional dependence of the thermal distribution on volume, we deduce

dependence of the thermal distribution on temperature is of the form

(C-O).

That the ratio of the wave energy to frequency is an adiabatic

invariant will be shown using the principle of least action. Action is

defined as the integral of the Lagrangian density which is the dif-

ference between the kinetic and potential energy densities. To de-

scribe a sound wave, we will show that the Lagrangian can be approxi-

mated and written in terms of the independent variables relating to

the amplitude and phase of the wave. Demanding that action be a

minimum, we will show that resulting dynamical equations imply that the

ratio of energy to frequency is an adiabatic invariant.

The Lagrangian density that is appropriate for a sound wave in a

fluid is of the form:

L p*2 - U(p)

where P is mass density, v is the fluid velocity, and U is the internal

energy. Since the sound wave is presumed to be of low amplitude, we

expand the Lagrangian density in terms of the deviations and keep only

leading order terms:
817U 5~ c2

L ~ U.p6E 6 -(p) -6 2p
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where P is the rest density, 6v and 6P are the deviations, and

c2= 32U . The leading term in the expansion of the internal energy

is neglected because it is constant and will have no effect when de-

manding that action be minimum. The second term is also neglected be-

cause its contribution to the sound wave energy is zero. The effective

Lagrangian density is therefore:

2pe

Next we rewrite the Lagrangian in terms of the Lagrange coordinates

using the relations:

- and 6p pe V

where n is the displacement of the fluid particle from equilibrium.

For a sound wave, the displacement can be written in terms of the

amplitude and phase:

4, .

- A exp(ie) + c.c.

where A is the amplitude and e is the phase to which frequency and

wavenumber are related as follows:

win-- and k ye
at

When the density of the fluid is changing slowly, then the quantities

A, w, and k are also slowly varying. Substituting the form of the

displacement into the Lagrangian density and neglecting the slow vari-

ations, we find

L Pe R e(Aexp(i(e) - A xp( ie)]2 a 2 22 (28 Ct 7

Since we are interested in global properties of the sound wave, we

average the Lagrangian over a wavelength:

71



<L> p peI2 JA 8e + C ve)2

Performing the variations of the independent variables A and e, and

demanding that action be a minimum, we find the equations:

(~)2 C2(7()) an - A 7 AteIi c7 0(Tt-I el I
Using vector analysis and algebra, we can use the two equations above

to derive the following equation:

* + 1. c 0 where Q - PeIJA t12 c2(+.e)2 + (1
This equation is in the form of a conservation equation for which the

invariant quantity is Q. The excess energy density for the fluid is

approximately: cE2
6 2 + _ 6P2

2 e 2
e

which if put in terms of A and e, and averaged gives the energy of the

sound wave:
aeQ

Since the quantity T is the frequency and the quantity Q is invariant,

we deduce that the energy divided by frequency is an adiabatic invari-

ant. For the particular case of the quasistatic change in volume we

have
d ( / ) - 0 ( c - )
dV

We now consider a small quasistatic change in volume of a fluid

at some initial temperature. The energy of thermal motion can be
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viewed as being distributed in an unique way over the wavenumbers of

the thermal waves. The quasistatic change in volume alters the distri-

bution. If nonlinear interaction between waves is neglectable, then

the change in the distribution can be determined by applying (C-1) to

each of the waves that compose the thermal distribution. From the

change in distribution we will derive information about the form of the

distribution.

The proof that nonlinearities are neglectable is as follows. We

imagine that the fluid is compressed with nonlinearities turned off

so that the distribution changes according to (C-i). Now we turn on

the nonlinearities. If we started from an equilibrium state and if the

compression is reversible then there can be no entropy change due to

nonlinearities and the new distribution generated from (C-1) must be an

equilibrium distribution for which nonlinearities have no effect.

To find the change in distribution due to the quasistatic volume

change, we let h be the mechanical function Ch-h(k,7)1 such that the

energy density in the wavenumber interval dk at k is hck 3dk (i.e. we

start with a certain distribution h over k for the given volume and

now change volume and therefore take h-h(k,V)). Then the fact that the

energy in dk divided by its frequency (ck) is invariant implies the

relation:

Vhk2 dk - V'h'k'2 dk' , (C-)

where V is the volume and the primes denote the changed quantities.

This relation can be simplified by expressing the primed wavenumber in

terms of the change in volume. Boundary conditions at the walls con-

taining the fluid demand that the wavdnumber be inversely proportional
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to the linear dimension of the system and since volume is proportional to

the third power of the linear dimension, we can use simple calculus to

derive the following relation which is valid to first order in the

change in volume:

3V 3k(C-3)3V

where AV is the change in volume. Substituting the k' from (C-3) into

(C-2) and keeping terms to order 37, we find h-h'. (C-4)

Using Eq. (C-4), we will show that the thermal distribution is of

the form:

u(k) - ck3h(k3V) . (c-5)

First we expand the primed h in a Taylor series about the initial

wavenumber and volume, and keep only terms first order in &V:

ah 3hh h(k',V) - h(k,V) + -,k 4 T-AV (C-6)

Using the Eqs. (C-3), (C-4), and (C-6), we can relate the partial

derivatives of h: 1 a - V 1h . The solution to this partial differ-
'33k ;

ential equation is h-h(kOV), which proves the thermal distribution is

of the form (C-5).

Our ultimate goal is to derive the displacement law, which will

follow from (C-5) and the fact that the quantity VT 3/c 3 is a tttrmo-

dynamic adiabatic invariant. The proof that &/c 3 is invariant will

proceed as follows. First we separate both the pressure and energy of

the fluid into two pieces: one piece due to thermal motion and the

other being that which exists in the absence of thermal motion (at

zero degrees). Then we use (C-l) to derive the relationship between

the pressure and energy of the excitations. With this relationship
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and a form of the second law of thermodynamics we will show that the

total energy of thermal motion has the following dependence on T and c:

U- constant.- (C-7)
x 3

Using this last relation and the first law of thermodynamics, we will

find that VT 3/c3 is constant for a quasistatic change in volume.

For the fluid we write the pressure and total energy density in

the sums: P-P o+P and U-Uo+U x where the subscript "zero" refers to the

values of the quantities at zero temperature and the subscript "x"

refers to contribution from thermal motion. The energy density and

pressure are related by the first law of thermodynamics:

P a' (C-8)

At zero degrees, this equation reads as

P =  U V (C-9)

Using (C-8) and (C-9), we can derive the equation that relates P and

U:
Px V 

(C-1)

A simple relationship between P and U can be derived from (C-l)I I

(C-10), and the assumption that the speed of sound depends only on

density. For a single wave, (C-l) implies that in a quasistatic change

in volume the change in wave energy in terms of the change in frequency

is given by the equation:

AE . w
E W

Since w-ck, the change in energy can be expressed in terms of Ak and

Ac:
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A tic Ak
E c k (C-1l)

If c is only a function of density, then the change in c in terms of

AV is:
c -ac AV (C-12)

6p V

Using (C-3), (C-II) and (C-12) we can express AE in terms of AV:

6E it + a Pdc 1 1 AV
c dP V

Since this equation is true for each wave that composes the thermal

distribution, it is also true for the whole distribution so that

A(UV) ._ 1 + e dc )UxAV

Comparing this equation to (C-10), we deduce that P isI

X 3 c UP (C-13)

As the relation for AE also applied only to adiabatic transforma-

tions, the dependence of Ux on T can be found using (C-13) and the

second law of thermodynamics. A consequence of the second law, which

arises from equating mixed partial derivatives of entropy, is the

equation: 31

T -T .V P (C-14)

au V0Since =- -P 0, we can w-rite (C-14) for just P xand U:x~~Ux:
a U x V I ft T 2 P x -

aV IT T -px

Substituting the P from (C-13), we have:
x
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au V
8UxVI . i ( 1 Edc T 51 I

If we let Z-V/c , we can transform the last equation:

7lnz T bInT 3  T

The general solution to this equation is

u _ -F(1n(zT3)
X V

where F is as yet undetermined. Since U is intensive, the function Fx

must be exponential and therefore the total energy density is given by

U= constant T4/c3  (C-15)

Using (C-l) and (C-15), we can prove that the quantity VT3 /c3 is

invariant for a quasistatic change in volume. Substituting the P fromK

(C-13) and the Ux from (C-15) into (C-10), we find with some algebra:

6T ( 1 4.d c ) T (C-16)
7v Ic dP V

The identity

1 pdc c3 a V

I cdP 3 jV c 3

is useful for the derivation. Using equation (C-16), we can show

directly that

)u =o (C-17)

An implication that can be made from (C-17) is that during any

quasistatic change in volume, the volume is proportional to a constant

3 3times T /c3 . Substituting this form of V into (C-5), we have the
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displacumt law for a f luid:

u (k) ack 3 f (ck/T)
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